This print-out should have 50 questions. Multiple-choice questions may continue on the next column or page - find all choices before answering.

$001 \quad 10.0$ points

What is the dominant species in solution at the equivalence point of a weak base-strong acid titration?

1. Weak acid
2. Strong base

3. Neutral salt

4. Weak base
5. Equal parts weak acid and weak base
6. Strong acid

00210.0 points

A and B are mildly volatile solvents. A mixture is made by combining 2 moles of A with 3 moles of B. Interpret the diagram below to determine the vapor pressure of this mixture.

1. 90 Torr
2. 110 Torr
3. 130 Torr
4. 150 Torr
5. 140 Torr
6. 70 Torr
7. 120 Torr
8. 80 Torr
9. 100 Torr

00310.0 points

A reaction has a negative change in entropy. This reaction can only be spontaneous if...

1. heat is absorbed at a sufficiently high temperature
2. heat is released at a sufficiently low temperature
3. heat is released at any temperature
4. heat is absorbed by the system at any temperature
5. None of these choices are correct because a reaction with a negative change in entropy can never be spontaneous

$004 \quad 10.0$ points

Consider the following overall reaction:

$$
2 \mathrm{~A}_{2}+\mathrm{X} \rightarrow \mathrm{~B}
$$

Using the overall reaction, determine the rate law for the following mechanism:

$$
\begin{array}{lr}
\mathrm{A}_{2}+\mathrm{X} \rightleftharpoons \mathrm{Z}+\mathrm{Y} & \left(k_{1}, \text { fast }\right) \\
\mathrm{Z}+\mathrm{Y} \rightarrow \mathrm{I} & \left(k_{2}, \text { slow }\right) \\
\mathrm{I}+\mathrm{A}_{2} \rightarrow \mathrm{~B} & \left(k_{3}, \text { fast }\right)
\end{array}
$$

1. Rate $=k^{\prime}[\mathrm{Z}][\mathrm{X}]$
2. Rate $=k^{\prime}\left[\mathrm{A}_{2}\right][\mathrm{Z}][\mathrm{X}]$
3. Rate $=k^{\prime}\left[\mathrm{A}_{2}\right]^{2}$
4. Rate $=k^{\prime}\left[\mathrm{A}_{2}\right]^{2}[\mathrm{X}]$
5. Rate $=k^{\prime}\left[\mathrm{A}_{2}\right][\mathrm{X}]$
6. Rate $=k^{\prime}[\mathrm{Z}][\mathrm{Y}]$
$005 \quad 10.0$ points
Using an electroplating system operating at
7.35 amps , it take 1.50 hours to plate out 5.00 grams of an unknown metal from its molten chloride salt, MCl_{2}. Identify the metal M .
7. Mg
8. Cd
9. Cu
10. Fe
11. Zn

$006 \quad 10.0$ points

A 19.7 g sample of an unknown salt (formula $=\mathrm{MX}_{2}$) is dissolved in 249.4 mL water. The boiling point of water in this solution is $100.657^{\circ} \mathrm{C}$. What is the molecular weight of the unknown salt?

1. $185 \mathrm{~g} / \mathrm{mol}$
2. $61.6 \mathrm{~g} / \mathrm{mol}$
3. $46.1 \mathrm{~g} / \mathrm{mol}$
4. $129.8 \mathrm{~g} / \mathrm{mol}$
5. $55.4 \mathrm{~g} / \mathrm{mol}$
$007 \quad 10.0$ points
Barium fluoride $\left(\mathrm{BaF}_{2}\right)$ is most soluble in which of the following solutions?
6. 0.50 M NaF
7. $0.005 \mathrm{M} \mathrm{Ba}(\mathrm{OH})_{2}$
8. 0.18 M NaF
9. The molar solubility of barium fluoride is the same in each of these solutions
10. $0.15 \mathrm{M} \mathrm{Ba}(\mathrm{OH})_{2}$
$008 \quad 10.0$ points
Consider the following substances: acetic acid $\left(\mathrm{CH}_{3} \mathrm{COOH}\right)$, propane $\left(\mathrm{C}_{3} \mathrm{H}_{8}\right)$, and acetone
$\left(\mathrm{CH}_{3} \mathrm{COCH}_{3}\right)$. The boiling points (in no particular order) are $-42^{\circ} \mathrm{C}, 56^{\circ} \mathrm{C}$, and $118^{\circ} \mathrm{C}$. The vapor pressures (in no particular order) are 225 Torr, 15 Torr, and 6400 Torr. What is the boiling point and vapor pressure for acetic acid?
11. $118^{\circ} \mathrm{C}, 15$ Torr
12. $56^{\circ} \mathrm{C}, 225$ Torr
13. $-42^{\circ} \mathrm{C}, 15$ Torr
14. $-42^{\circ} \mathrm{C}, 6400$ Torr
15. $118^{\circ} \mathrm{C}, 6400$ Torr

$009 \quad 10.0$ points

What is the ratio of potassium acetate to acetic acid necessary to make a buffer with a pH equal to 5.12 ?

$$
\text { 1. } 2.4
$$

2. 3.1
3. 0.38
4. 0.42
5. 2.9
6. 9.86

$010 \quad 10.0$ points

Consider the following reaction:

$$
2 \mathrm{C}_{2} \mathrm{H}_{6}(\mathrm{~g})+7 \mathrm{O}_{2}(\mathrm{~g}) \longrightarrow 4 \mathrm{CO}_{2}(\mathrm{~g})+6 \mathrm{H}_{2} \mathrm{O}(\ell)
$$

Oxygen is being consumed at a rate equal to $1.24 \mathrm{M} / \mathrm{s}$. What is the initial rate at which carbon dioxide is forming?

1. $1.24 \mathrm{M} / \mathrm{s}$
2. $4.96 \mathrm{M} / \mathrm{s}$
3. $0.709 \mathrm{M} / \mathrm{s}$
4. $8.68 \mathrm{M} / \mathrm{s}$
5. $2.17 \mathrm{M} / \mathrm{s}$

$011 \quad 10.0$ points

Identify the missing isotope in the nuclear reaction.

$$
{ }_{88}^{226} \mathrm{Ra} \rightarrow \quad ?+{ }_{2}^{4} \alpha
$$

1. ${ }_{86}^{22} \mathrm{Rn}$
2. ${ }_{86}^{226} \mathrm{Rn}$
3. ${ }_{86}^{230} \mathrm{Th}$
4. ${ }_{90}^{230} \mathrm{Th}$
5. ${ }_{90}^{222} \mathrm{Rn}$
$012 \quad 10.0$ points
What is the pH after 250 mL of 0.25 M HNO_{3} is added to 350 mL of $0.50 \mathrm{M} \mathrm{CH}_{3} \mathrm{NH}_{2}$ (methylamine) ?
6. 3.36
7. 10.90
8. 10.64
9. 6.21
10. 2.29
11. 10.38
12. 3.62
13. 5.05

01310.0 points

$0.834 \mathrm{~atm} \mathrm{~A}, 0.565 \mathrm{~atm} \mathrm{~B}$, and 1.24 atm C are placed into a container to run the following reaction:

$$
2 \mathrm{~A}(\mathrm{~g})+\mathrm{B}(\mathrm{~g}) \rightleftharpoons 3 \mathrm{C}(\mathrm{~g})
$$

At equilibrium, 0.435 atm C remains. What is K_{p} for this reaction?

1. 18.8
2. 0.0526
3. 0.107
4. 0.0230
5. 8.12

$014 \quad 10.0$ points

A weak acid, HA, ionizes 7.65% at a 0.250 M concentration. What is the hydroxide ion concentration in this solution?

1. $1.00 \times 10^{-14} \mathrm{M}$
2. $1.91 \times 10^{-2} \mathrm{M}$
3. $5.23 \times 10^{-13} \mathrm{M}$
4. $1.31 \times 10^{-13} \mathrm{M}$
5. $1.91 \times 10^{-16} \mathrm{M}$

$015 \quad 10.0$ points

The following diagram shows a solution on the left (dark shade) and just the solvent on the right (light shade) separated by a semipermeable membrane.

Which diagram best represents the final state of this system after equilibrium is achieved?

3.

016 (part 1 of 2) $\mathbf{1 0 . 0}$ points
You run an experiment to determine the initial rates of the following generic reaction at various starting conditions:

$$
\mathrm{A}+\mathrm{X}_{2} \rightleftharpoons \mathrm{AX}_{2}
$$

	$[\mathrm{A}]$	$\left[\mathrm{X}_{2}\right]$	initial rate
	M	M	$\mathrm{M} \cdot \mathrm{s}^{-1}$
Trial 1	0.60	1.56	2.00×10^{-3}
Trial 2	0.60	3.12	8.00×10^{-3}
Trial 3	1.20	1.56	4.00×10^{-3}
Trial 4	0.90	2.40	7.10×10^{-3}

What is the correct rate law for the reaction?

1. Rate $=\left(3.84 \times 10^{-3}\right)[\mathrm{A}]^{-1}\left[\mathrm{X}_{2}\right]^{2}$
2. Rate $=(1.40)[\mathrm{A}]$
3. Rate $=\left(1.37 \times 10^{-3}\right)[\mathrm{A}]\left[\mathrm{X}_{2}\right]$
4. Rate $=\left(3.84 \times 10^{-3}\right)[\mathrm{A}]\left[\mathrm{X}_{2}\right]^{2}$
5. Rate $=\left(1.37 \times 10^{-3}\right)[\mathrm{A}]\left[\mathrm{X}_{2}\right]^{2}$

017 (part 2 of 2) $\mathbf{1 0 . 0}$ points
What are the units of the rate constant in the previous question?

1. $\frac{1}{\mathrm{M}^{3} \cdot \mathrm{~s}}$
2. $\frac{1}{\mathrm{M} \cdot \mathrm{s}}$
3. $\frac{\mathrm{M}}{\mathrm{s}}$
4. $\frac{1}{\mathrm{M}^{2} \cdot \mathrm{~s}}$
5. $\frac{1}{\mathrm{M}^{4} \cdot \mathrm{~s}}$

018 (part 1 of 2) $\mathbf{1 0 . 0}$ points
What is the shorthand notation for the following electrochemical cell?
$2 \mathrm{Cr}^{2+}(\mathrm{aq})+\mathrm{Co}^{2+}(\mathrm{aq}) \longrightarrow 2 \mathrm{Cr}^{3+}(\mathrm{aq})+\mathrm{Co}(\mathrm{s})$

1. $\mathrm{Cr}^{2+}\left|\mathrm{Cr}^{3+} \| \mathrm{Co}^{2+}\right| \mathrm{Co}$
2. $\mathrm{Cr}^{2+}, \mathrm{Cr}^{3+} \| \mathrm{Co}^{2+} \mid \mathrm{Co}$
3. $\mathrm{Pt}\left|\mathrm{Cr}^{2+}, \mathrm{Cr}^{3+} \| \mathrm{Co}^{2+}\right| \mathrm{Co}$
4. $\mathrm{Co}\left|\mathrm{Co}^{2+} \| \mathrm{Cr}^{2+}, \mathrm{Cr}^{3+}\right| \mathrm{Pt}$
5. $\mathrm{Co}^{2+} \mid \mathrm{Co} \| \mathrm{Cr}^{2+}, \mathrm{Cr}^{3+}$

019 (part 2 of 2) $\mathbf{1 0 . 0}$ points
What is the oxidizing agent in the previous problem?

$$
\text { 1. } \mathrm{Co}^{2+}
$$

2. Pt
3. Cr^{3+}
4. Co
5. Cr^{2+}

Use the following phase diagram for the next two questions.

What is the normal melting point for this substance? Note: the vertical axis is logarithmic in scale.

1. $0^{\circ} \mathrm{C}$
2. $150^{\circ} \mathrm{C}$
3. $75^{\circ} \mathrm{C}$
4. $120^{\circ} \mathrm{C}$
5. $20^{\circ} \mathrm{C}$
6. $45^{\circ} \mathrm{C}$

021 (part 2 of 2) $\mathbf{1 0 . 0}$ points
A sample of this substance is held at 0.1 atm and $-50^{\circ} \mathrm{C}$. The sample is pressurized to 3 atm and then heated to $250^{\circ} \mathrm{C}$. In total, what phase transitions occurred?

1. melting and boiling
2. sublimation and condensation
3. melting and condensation
4. sublimation only
5. melting and freezing

Use half-reactions from the standard reduction table to calculate the K_{sp} for $\mathrm{Zn}\left(\mathrm{IO}_{3}\right)_{2}$.

1. 3.9×10^{-6}
2. 4.8×10^{-12}
3. 1.7×10^{-26}
4. 6.8×10^{-32}
5. 7.3×10^{-19}

$023 \quad 10.0$ points

${ }^{123} \mathrm{I}$ is a radioactive isotope $\left(t_{1 / 2}=13.22\right.$ hours) useful for clinical imaging. How long will it take for a dose to diminish to 18.7% of its original value?

1. 34.2 hours
2. 557 hours
3. 38.7 hours
4. 87.9 hours
5. 70.7 hours
6. 29.7 hours
7. 22.2 hours
8. 32.0 hours

$024 \quad 10.0$ points

Which of the following salts is the most soluble in pure water?

1. $\mathrm{CuBr} \quad K_{\mathrm{sp}}=6.3 \times 10^{-9}$
2. $\mathrm{CaF}_{2} \quad K_{\mathrm{sp}}=3.5 \times 10^{-11}$
3. $\mathrm{BaSO}_{4} \quad K_{\mathrm{sp}}=1.1 \times 10^{-10}$
4. All of these salts have the same solubility
$025 \quad 10.0$ points
Write the equilibrium constant for the follow-
ing reaction.

$$
\mathrm{H}_{2}(\mathrm{~g})+\mathrm{Br}_{2}(\ell) \rightleftharpoons 2 \mathrm{HBr}(\mathrm{~g})
$$

1. $K_{p}=\frac{P_{\mathrm{HBr}}^{2}}{P_{\mathrm{H}_{2}}}$
2. $K_{p}=\frac{P_{\mathrm{HBr}}^{2}}{P_{\mathrm{H}_{2}}\left[\mathrm{Br}_{2}\right]}$
3. $K_{p}=\frac{P_{\mathrm{H}_{2}}}{P_{\mathrm{HBr}}^{2}}$
4. $K_{p}=\frac{P_{\mathrm{HBr}}}{P_{\mathrm{H}_{2}}}$
5. $K_{p}=\frac{P_{\mathrm{HBr}}^{2}}{P_{\mathrm{H}_{2}} P_{\mathrm{Br}_{2}}}$
$026 \quad 10.0$ points
A sample of 44.1 g of para-dichlorobenzene $\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Cl}_{2} 147.0 \mathrm{~g} / \mathrm{mol}\right)$ is dissolved into 350 mL of hexane $\left(\mathrm{C}_{6} \mathrm{H}_{14}, 86.18 \mathrm{~g} / \mathrm{mol}\right.$, density $0.661 \mathrm{~g} / \mathrm{mL})$. What is the molality of this solution?
6. 1.30 m
7. 0.101 m
8. 0.857 m
9. 1.17 m
10. 0.567 m

$027 \quad 10.0$ points

Calculate the number of moles of oxygen that will dissolve in 45 L of water at $20^{\circ} \mathrm{C}$ if the partial pressure of oxygen is 0.21 atm . The Henry's Law constant for oxygen in water at $20^{\circ} \mathrm{C}$ is $0.0013 \mathrm{M} / \mathrm{atm}$.

1. 0.0062 mol
2. 0.00027 mol
3. 0.0013 mol
4. 0.28 mol
5. 0.012 mol
$028 \quad 10.0$ points
What is the pH of a 0.12 M solution of hydroxylammonium bromide $\left(\mathrm{NH}_{3} \mathrm{OHBr}\right)$?
6. 4.44
7. 3.24
8. 3.33
9. 3.61
10. 9.56
11. 3.48
12. 3.72
13. 6.04

$029 \quad 10.0$ points

The following reaction occurs in acidic conditions. What is the coefficient of water in the overall balanced equation? Is it a reactant or a product?

$$
\mathrm{As}_{2} \mathrm{O}_{3}+\mathrm{NO}_{3}^{-} \longrightarrow \mathrm{H}_{3} \mathrm{AsO}_{4}+\mathrm{NO}
$$

1. 3; reactant
2. 7; reactant
3. 2; product
4. 4; reactant
5. 2; reactant
6. 3; product

$030 \quad 10.0$ points

What is the potential for the following cell?
$\operatorname{In}\left|\operatorname{In}^{3+}(0.010 \mathrm{M})\right| \mid$

$$
\mathrm{Ce}^{4+}(0.50 \mathrm{M}), \mathrm{Ce}^{3+}(0.010 \mathrm{M}) \mid \mathrm{Pt}
$$

1. 2.37 V
2. 1.88 V
3. 2.02 V
4. 1.95 V
5. 1.81 V
6. 2.09 V

031 (part 1 of 2) $\mathbf{1 0 . 0}$ points

Consider the following reaction for the next two questions:

$$
\mathrm{CO}(\mathrm{~g})+2 \mathrm{H}_{2}(\mathrm{~g}) \rightleftharpoons \mathrm{CH}_{3} \mathrm{OH}(\mathrm{~g})
$$

Beginning at equilibrium, which of the following will result in a shift toward the right of this reaction?

1. Adding an inert gas at constant volume
2. Adding an inert gas at constant pressure

3. Adding $\mathrm{CH}_{3} \mathrm{OH}$ gas

4. Removing CO gas
5. Reducing the volume of the container

032 (part 2 of 2) 10.0 points
If this reaction is exothermic, lowering the temperature will cause the reaction to...

1. remain at equilibrium
2. shift right due to a larger K value
3. shift left due to a smaller K value
4. shift left due to a smaller Q value
5. shift right due to a decreased Q value

033 (part 1 of 2) 10.0 points
The following two questions refer to this diagram for a voltaic cell. Neither of the two
electrodes are an inert electrode.

Anode Cell Cathode Cell
Where would you find the species that is being oxidized?

1. D
2. C
3. B
4. A
5. E

034 (part 2 of 2) 10.0 points
If the half-reaction for the anode involves Fe^{2+} and Fe , which of these redox pairs could be in the cell on the right?

1. H^{+}and H_{2}
2. None of these can give a voltaic cell
3. Cr^{3+} and Cr
4. Sn^{2+} and Sn
5. Mn^{2+} and Mn

$035 \quad 10.0$ points

${ }_{42}^{99} \mathrm{Mo}$ undergoes radioactive decay by emitting a single beta particle. Which of the following reactions corresponds to this process?

1. ${ }_{42}^{99} \mathrm{Mo} \longrightarrow{ }_{43}^{99} \mathrm{Tc}+{ }_{-1}^{0} \beta$
2. ${ }_{42}^{99} \mathrm{Mo}+{ }_{-1}^{0} \beta \longrightarrow{ }_{41}^{99} \mathrm{Nb}$
3. ${ }_{42}^{99} \mathrm{Mo}+{ }_{-1}^{0} \beta \longrightarrow{ }_{43}^{99} \mathrm{Tc}$
4. ${ }_{42}^{99} \mathrm{Mo} \longrightarrow{ }_{44}^{99} \mathrm{Ru}+{ }_{-1}^{0} \beta$
5. ${ }_{42}^{99} \mathrm{Mo} \longrightarrow{ }_{22}^{98} \mathrm{Tc}+{ }_{0}^{1} n$

$036 \quad 10.0$ points

Consider the following generic gas phase reaction.

$$
\mathrm{X}_{2}(\mathrm{~g})+3 \mathrm{Y}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{XY}_{3}(\mathrm{~g})
$$

The value of K_{p} for this reaction is 107. Calculate the equilibrium partial pressure of gas Y_{2} if the equilibrium partial pressures of XY_{3} is 0.50 atm and X_{2} is 0.15 atm ?

1. 5.6 atm
2. 0.33 atm
3. 0.016 atm
4. 0.42 atm
5. 0.031 atm
6. 0.25 atm
7. 0.18 atm

$037 \quad 10.0$ points

Isocarboxazid ($\mathrm{MW}=231.25 \mathrm{~g} / \mathrm{mol}$) is an organic monoamine oxidase inhibitor used to treat depression disorders. 38.00 grams of isocarboxazid are added to water to make a 350 mL aqueous solution. What is the osmotic pressure exerted by this solution across a semi-permeable membrane at $37^{\circ} \mathrm{C}$?

1. 12.10 atm
2. 329.6 atm
3. 23.90 atm
4. 1.43 atm
5. 144.4 atm

$038 \quad 10.0$ points

The chlorination of methane is an exothermic reaction with a two-step mechanism shown below:

$$
\text { Step 1: } \mathrm{CH}_{4}+\mathrm{Cl}_{2} \longrightarrow \mathrm{CH}_{3}+\mathrm{HCl} \text { (slow) }
$$

Step 2: $\mathrm{CH}_{3}+\mathrm{Cl}_{2} \longrightarrow \mathrm{CH}_{3} \mathrm{Cl}+\mathrm{Cl}^{-}$(fast)
Which of the following reaction coordinate diagrams best fits this data?
1.

2.

3.

4.

5.

6.

$039 \quad 10.0$ points
Rank the following acids in increasing order of acidity.

$$
\mathrm{HCN} \quad \mathrm{NH}_{3} \mathrm{OH}^{+} \quad \mathrm{HNO}_{2} \quad \mathrm{HBrO}
$$

1. $\mathrm{HCN}<\mathrm{NH}_{3} \mathrm{OH}^{+}<\mathrm{HNO}_{2}<\mathrm{HBrO}$
2. $\mathrm{NH}_{3} \mathrm{OH}^{+}<\mathrm{HBrO}<\mathrm{HCN}<\mathrm{HNO}_{2}$
3. 11.95 atm
4. $\mathrm{HNO}_{2}<\mathrm{NH}_{3} \mathrm{OH}^{+}<\mathrm{HBrO}<\mathrm{HCN}$
5. $\mathrm{HNO}_{2}<\mathrm{HBrO}<\mathrm{HCN}<\mathrm{NH}_{3} \mathrm{OH}^{+}$
6. $\mathrm{NH}_{3} \mathrm{OH}^{+}<\mathrm{HNO}_{2}<\mathrm{HBrO}<\mathrm{HCN}$
7. $\mathrm{HCN}<\mathrm{HBrO}<\mathrm{NH}_{3} \mathrm{OH}^{+}<\mathrm{HNO}_{2}$

$040 \quad 10.0$ points

Calculate the pH of a $0.018 \mathrm{M} \mathrm{Ba}(\mathrm{OH})_{2}$ solution.

1. 5.26
2. 8.44
3. 12.56
4. 12.26
5. 1.44
6. 1.74

$041 \quad 10.0$ points

How does a catalyst affect the rate of a chemical reaction?

1. A catalyst increases the rate constant by increasing the activation energy
2. A catalyst increases the energy of the transition state such that a larger number of particles have sufficient energy to overcome the activation energy
3. A catalyst increases the rate constant by providing an alternate mechanism with a lower activation energy
4. A catalyst decreases the rate constant by lowering the activation energy

$042 \quad 10.0$ points

When direct heat is applied to potassium chlorate, KClO_{3}, it decomposes to form KCl and other byproducts. Was chlorine oxidized or reduced? How many electrons were transferred during the process?

1. oxidized, 3 electrons
2. reduced, 9 electrons
3. oxidized, 6 electrons
4. oxidized, 4 electrons
5. reduced, 3 electrons
6. reduced, 6 electrons

$043 \quad 10.0$ points

Consider the following cell:

$$
\mathrm{Pd}\left|\mathrm{Pd}^{2+}\right|\left|\mathrm{Ru}^{3+}\right| \mathrm{Ru}
$$

What is ΔG° for the overall cell reaction that is represented here? Balance the reaction using the lowest possible integer values.

1. -91.2 kJ
2. +91.2 kJ
3. +877 kJ
4. +182 kJ
5. -877 kJ
6. -182 kJ

$044 \quad 10.0$ points

What is the mass of the barium chromate precipitate resulting from the addition of 300 $\mathrm{mL} 0.025 \mathrm{M} \mathrm{Ba}(\mathrm{OH})_{2}$ to 200 mL 0.040 M $\mathrm{Na}_{2} \mathrm{CrO}_{4}$?

1. 1.90 g
2. 3.80 g
3. 2.03 g
4. 2.52 g
5. 3.48 g

045 (part 1 of 3) $\mathbf{1 0 . 0}$ points
A sample of 30 mL of a weak acid (HA) solution was titrated with 0.075 M NaOH . The pH curve for this titration is shown.

What is the concentration of the original weak acid solution (the 30 mL)?

1. 0.075 M
2. 0.055 M
3. 0.032 M
4. 0.048 M
5. 0.022 M

046 (part 2 of 3) $\mathbf{1 0 . 0}$ points
Which of the following is the value of K_{a} for the weak acid, HA ?

1. 1.2×10^{-7}
2. 5.0×10^{-7}
3. 1.3×10^{-6}
4. 7.6×10^{-5}
5. 3.2×10^{-10}

047 (part 3 of 3) 10.0 points

Below is a listing of five indicators and their associated $\mathrm{p} K_{\mathrm{a}}$ values. Which indicator would be the best one to use for this titration?

1. bromocresol purple, 6.4
2. methyl red, 5.0
3. thymol blue, 9.3
4. bromophenol blue, 4.1
5. phenol red, 7.4
6. alizarin yellow, 10.9

$048 \quad 10.0$ points

You mix $0.02 \mathrm{mmol} \operatorname{Sr}\left(\mathrm{NO}_{3}\right)_{2}$ solution and 0.05 mmol NaF solution to form a 100 mL solution. What precipitate (if any) forms?

1. NaNO_{3}
2. $\mathrm{Sr}\left(\mathrm{NO}_{3}\right)_{2}$
3. NaF
4. SrF_{2}
5. No precipitate forms

$049 \quad 10.0$ points

The enthalpy of vaporization of a liquid is measured to be about $28.4 \mathrm{~kJ} / \mathrm{mol}$ and its normal boiling point is $128^{\circ} \mathrm{C}$. At what temperature is the partial pressure of this substance 1180 torr?

1. $176^{\circ} \mathrm{C}$
2. $150^{\circ} \mathrm{C}$
3. $-281^{\circ} \mathrm{C}$
4. $181^{\circ} \mathrm{C}$
5. $162^{\circ} \mathrm{C}$
6. $-381^{\circ} \mathrm{C}$
7. $-7.92^{\circ} \mathrm{C}$

Consider a standard voltaic cell at equilibrium. Which of the following is true?

1. $\mathrm{E}>0, \Delta G>0, K>1$
2. $\mathrm{E}<0, \Delta G>0, K<0$
3. $\mathrm{E}<0, \Delta G>0, K<1$
4. $\mathrm{E}=0, \Delta G=0, K=1$
5. $\mathrm{E}=0, \Delta G=0, K>1$
